Search results for "Acyl-CoA Dehydrogenase"
showing 8 items of 8 documents
Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells.
2016
The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (A…
Cloning and tissue expression of two cDNAs encoding the peroxisomal 2-enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in the guinea pig liver
1996
Abstract The 2-enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (HD) is the second enzyme of the peroxisomal β-oxidation pathway. In human and rat, only one HD mRNA has been so far detected in the liver. This paper reports for the first time in a mammal species, the guinea pig, the cloning and sequencing of two cDNAs encoding an HD. The 3,274 nucleotide-cDNA is a strictly identical but longer copy of the 2,494 nucleotide-form. A 2,178 by-open reading frame encodes a protein of 726 amino acids ( M r 79.3 kDa) with the peroxisomal-targeting signal (tripeptide SKL) at the carboxyterminus. Northern blot analysis of HD mRNA identified three mRNAs of respective sizes 3.5, 2.6 and 1.6 kb in the…
Identification and Expression of the SOS Response, aidB-Like, Gene in the Marine Sponge Geodia cydonium: Implication for the Phylogenetic Relationshi…
1998
Sponges (Porifera) are the phylogenetically oldest metazoan organisms. From one member of the siliceous sponges, Geodia cydonium, the cDNA encoding a putative SOS protein, the AidB-like protein of the Ada system from bacteria, was isolated and characterized. The cDNA, GCaidB, comprises an open reading frame of 446 amino acid (aa) residues encoding a polypeptide with a calculated Mr of 49,335. This molecule shows high similarity to the bacterial AidB proteins from Mycobacterium tuberculosis and Escherichia coli and somewhat lower similarities to acyl-CoA dehydrogenases (ADHs) and acyl-CoA oxidases (AOXs). Northern blot analysis confirmed the presence of the complete transcript. The deduced s…
Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimat…
2004
Brown (BAT) and white (WAT) adipose tissues play a key role in the body energy balance orchestrated by the central nervous system. Hibernators have developed a seasonal obesity to respond to inhospitable environment. Jerboa is one of the deep hibernator originated from sub-desert highlands. Thus, this animal represents an excellent model to study cold adaptation mechanism. We report that the adipogenic factor PPARgamma exhibits a differential expression between BAT and WAT at mRNA level. A specific induction was only seen in WAT of pre-hibernating jerboa. Interestingly, PPAR beta/delta is specifically induced in BAT and brain of pre-hibernating jerboa, highlighting for the first time the po…
Clinical manifestations and management of four children with Pearson syndrome.
2011
Pearson marrow-pancreas syndrome is a fatal disorder mostly diagnosed during infancy and caused by mutations of mitochondrial DNA. We hereby report on four children affected by Pearson syndrome with hematological disorders at onset. The disease was fatal to three of them and the fourth one, who received hematopoietic stem cell transplantation, died of secondary malignancy. In this latter patient transplantation corrected hematological and non-hematological issues like metabolic acidosis, and we therefore argue that it could be considered as a useful option in an early stage of the disease.
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: a severe fatty acid oxidation disorder
1994
3-Hydroxyacyl-CoA dehydrogenase deficiency is a newly recognised fatty acid oxidation disorder with a usually fatal outcome. We present a further patient who presented with hypoketotic hypoglycaemia, hepatopathy, secondary carnitine deficiency and increased plasma long-chain acylcarnitines. 3-Hydroxydicarboxylic aciduria was present and the diagnosis confirmed in cultured skin fibroblasts. Our patient is compared with those reported in the literature with respect to clinical symptoms, differential diagnosis and possible therapeutic regimens.
Maternal vitamin deficiency mimicking multiple acyl-CoA dehydrogenase deficiency on newborn screening
2021
Abstract Background In infancy multiple acyl-CoA dehydrogenase deficiency (MADD) is commonly a severe inherited metabolic disease caused by genetic defects in electron transfer flavoprotein (ETF) or ETF ubiquinone oxidoreductase. Both enzymes require flavin adenine dinucleotide (FAD) as a cofactor. Riboflavin (vitamin B2) is a precursor in the synthesis of FAD. MADD can be detected by newborn screening (NBS) based on elevation of multiple acylcarnitines. Methods We present the results of two children whose NBS results and subsequent confirmatory testing resulted in a suspected diagnosis of MADD. In parallel in both children vitamin B12 deficiency was detected. Results Biochemical profiles n…
The analysis of modified peroxisome proliferator responsive elements of the peroxisomal bifunctional enzyme in transfected HepG2 cells reveals two re…
1995
AbstractPeroxisome proliferators (PPs) are non-genotoxic carcinogens in rodents. They can induce the expression of numerous genes via the heterodimerization of two members of the steroid hormone receptor superfamily, called the peroxisome proliferator-activated receptor (PPAR) and the 9-cis retinoic acid receptor (RXR). Many of the PP responsive genes possess a peroxisome proliferator response element (PPRE) formed by two TGACCT-related motifs. The bifunctional enzyme (HD) PPRE contains 3 such motifs, creating DR1 and DR2 sequences. PPAR and RXR regulate transcription via the DR1 element while DR2 modulates the expression of the gene via auxiliary factors in HepG2 cells.